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produced the progeny that would be expected if the exceptional white were
a normal pink. This analysis indicates that the inability of these excep-
tional adenine-dependent, methionine-independent cultures to produce
the pink pigment was due to some mechanism which is restored to activity
following hybridization.
The following hypothesis is invoked to explain the effect of outcrossing

in restoring the pink color. Pink depends upon the presence of the two
genes ad and MET plus some other substances (X, Y, Z, etc.). The
substance X is an essential component of gene X which has no other com-
ponents besides X. Continuous production of pink exhausts the supply
ofX and results in the "running out" of the character. The stock to which
the outcross is made carries gene X with an intact supply of the X com-
ponent for since the stock does not produce pink it does exhaust its supply
of the X substance. The outcross automatically restores the X substance
and reestablishes the pink color. Other stocks may become white because
Y or Z substances are exhausted. Mutations from pink to white are not
the result of a drastic change in genotype but merely the result of the
exhaustion of some gene component easily supplied by outcrossing to any
normal stock.

* This work was supported by grants from Anheuser-Busch, Inc., Washington Uni-
versity and the American, Cancer Society.
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7. Introduction.-Permanent ocean currents are computed from the
observed distribution of density on the assumptions (1) that the horizontal
pressure gradient is balanced by the Coriolis force (the deflecting force of
the earth's rotation) and (2) that the horizontal velocities and the hori-
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zontal pressure gradient vanish at a moderate depth below the sea surface.
The second condition can be fulfilled only in a barocinic system, that is,
in a system in which the isosteric surfaces intersect the isobaric surfaces.

In the computation of currents acceleration and frictional forces are
neglected. Experience indicates that the computations lead to nearly
correct results, implying that accelerations and frictional forces are small,
but since friction is not entirely lacking, energy must be supplied to the
ocean in order to maintain the permanent currents and the corresponding
permanent distribution of mass. This energy can be supplied by the
effects of heating and cooling or by the stress which the prevailing winds
exert on the sea surface. Of the sources the latter is generally considered
to be the more important. We shall examine effects of the wind stress
only, taking into account that the ocean waters in motion represent a
baroclinic system.
Ekman1 and Stockmann2 have examined the currents which develop

in a homogeneous ocean under the influence of a stress exerted on the free
surface, and Fjeldstad3 has solved a special problem dealing with baro-
clinic conditions. If the general problem for a barocinic ocean could be
solved, knowledge of the wind stress alone would enable us to compute the
permanent ocean currents, provided the effects of heating and cooling were
negligible. A treatment of this general problem would present great
mathematical difficulties because it would require the introduction of
lateral frictional stresses and complete boundary conditions. Here we
shall deal with the special case of equatorial currents in a region where
lateral stresses can be neglected, boundary conditions are relatively simple,
wind systems are semipermanent, and where our results imply that effects
of heating and cooling, if present, need not be considered explicitly.
The striking feature of the currents of the equatorial regions is that

imbedded between the currents which flow toward the west under the
influence of the prevailing trade winds equatorial counter currents flow
toward the east. In the Pacific and Atlantic Oceans the counter current
is particularly well developed in the eastern parts of the oceans where it
is located north of the equatog, its axis coinciding approximately with the
location of the equatorial calm belt which is found further to the north in
summer than in winter. In the Indian Ocean the counter current is found
to the south of the equator, but in the northern winter only.
Our specific problem is to determine whether the equatorial currents,

including the counter currents, can be accounted for on the basis of our
knowledge of the wind stress only. This problem was first approached
by Montgomery and Palm6n,4 but Stockmann2 has shown that they did
not treat it in a sufficiently general manner. Stockmann's theoretical
results, however, are not applicable to the conditions in the ocean because
he assumed homogeneous water, but a similar analysis for a baroclinic
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system leads to a remarkable agreement between theoretical conclusions
and observed conditions.

2. Theory.-The ocean waters are so nearly in hydrostatic equilibrium
that at any depth the pressure, p, can be determined by a numerical
integration of the hydrostatic equation:

dp = gp dz (1)

provided that the density, p, is known from observations. In equation (1)
and in the following equations the z-axis is positive downwards.

Neglecting lateral stresses the equations of horizontal motion can be
written:

au+ uaU + Va _ a + XV + (aU
ait ax by pax p az az (
av+a +v av = _1 _.+ -1 a (A
at ax by p by p az az

where u and v are the horizontal velocity components in a rectilinear
coordinate system, X = 2w sin p (w the earth's angular velocity of rotation,
p the latitude, taken positive to the north of the equator), and A is the
eddy viscosity.
We shall assume stationary conditions,

iiu 6VaU=
-
= o, (3)

and shall neglect the non-linear terms, the field accelerations:

bu bu Iv 6v
i-+v-=u + - = (4)bx )y sx b(

thereby placing severe restrictions upon the possible lateral boundary
conditions. Equations (2) reduce to:

ax az az
_=XMn +-(A-)

by az aZ

stating that the horizontal pressure gradient is balanced by the Coriolis
force and frictional stresses exerted on horizontal surfaces. In homogeneous
water the horizontal pressure gradient is independent of depth but in a
barodinic system varies with depth. In the ocean it generally vanishes at
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a moderate depth, less than that to the bottom. We define a function P
by the integrals

('d ap ap .fd
--J= z ~ ~-= JJ -dz (6)

where d is equal to or greater than the depth at which the horizontal
pressure gradient becomes zero. The function P, which is closely related
to the P-function introduced by Ekman,r can be computed from the
observed vertical distribution of density at a single oceanographic station,
using equation (1).
The horizontal velocity must vanish at or above the depth d. The

integrals

M-JAdpudz, Myv=IAd pVdz (7)

represent therefore the components of the net mass transport by the cur-
rents.

Integrating equations (5) from 0 to d, and introducing the horizontal
boundary conditions:

(Aa) = -z, (A( ) ( 0

(A)=8- (A-) =0

where Tx and ry are the components of the wind stress, we obtain:

-= XMv + rX (9a)bx

a = -XMx + r, (9b)
b'y

The terms in equations (9) are well known in oceanography. Omitting
the stress components the equations give the mass transpoit related to the
distribution of density, or assuming homogeneous water- in hydrostatic
equilibrium (bP/ax = =Pby- 0) they give the mass transport by pure
wind currents. Equations (9) have been used by Defant6 for computing
the wind stress from oceanographic observations, including direct measure-
ments of currents, but they have not been applied to other problems.
For application to other problems we add the equation:

bMs + bMg = o (10)

which is obtained by integration of the equation of continuity, assuming
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that the vertical velocity is zero at the free surface and at the depth d.
The three equations (9a), (9b) and (10) can be considered as relating the
three unknown quantities, P, M,, and M,, to the known wind stress. Con-
sequently, the distribution of density, as described by the partial deriva-
tives of P, and the mass transport by the corresponding currents can be
expressed as functions of the stress.

In applying equations (9) and (10) to equatorial currents we place the
positive x-axis toward the east and the positive y-axis toward the north,
and let y = 0 at the equator (p = 0). Since

dy = Rdio (11)

where R is the radius of the earth:

Ox Xa 2wcCos f 2X 2w sin (12)
bx by)2 R ' j

Differentiating equation (9a) with respect to y and (9b) with respect to
x, subtracting and taking equations (10) and (12) into account, we obtain

Mt
bx

+ 6y X6)- ° (13)

In the trade-wind belt of the eastern Pacific the term 6)r,/1)x is so small
that with good approximation:

=-/ =

1rR- (14)
My=by/ =b by 2w cos (1

Introducing equation (14) in (9a):
bP xR tanp +r (15)

or, writing differences on the left-hand side:

_ =z---P tanp +Ts (16)

where averages over the distance Ax are indicated by bars.
From equations (10). and (14) follows

*_ 1 (1)rz2tan r0+ (17)
- x -2co cos yp y b

When integrating equation (17) from 0 to Ax we shall assume a north-south
vertical boundary at x = 0 at which the kinematic boundary condition
-uo = 0 must be satisfied in the form Me = 0. We obtain:
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2=
I - tanp + R (18)=2wo cos (p (y2/

Equation (18) cannot hold at a second north-south boundary at, say,
x = L, at which the condition ML = 0 must be satisfied. This inadequacy
of our solution is due to the neglect of the field accelerations (eq. 4). At-
tempts will be made to find more general solutions and to study other
special cases.

Substituting equation (18) in (9b):

-Axtanp.(-tanp+ -ZR)+ (19)

Equations (15) or (16) and (19), together with (14) and (18), represent
in our special case the relationships of the distribution of mass and the
corresponding mass transport to the wind stress. The validity of our
results can be tested where suitable observations are available.

3. Discussion.-The available oceanographic observations comprise
(1) a line of 8 stations between latitudes 22°N and 10°S, longitudes 137°W
and 162°W, occupied by the Carnegie between October 21 and November 4,
1929 (Fleming7); (2) a line of 12 stations between latitudes 6°N and 9S,
longitudes 80°W and 108°W, occupied by the Carnegie between October
26 and November 21, 1928; and (3) a line of 8 stations between latitudes
9°N and 21°N, longitudes 87°W and 109°W, occupied by the Bushnell
between March 18 and March 24, 1939 (Sverdrup8). From the observa-
tions at each of these stations the value of the function P was computed
by integrating to a depth of 1000 meters. From all data the ratio AP/Ax
was found, and from the Carnegie section in mid-ocean 6P/by was derived.
Wind observations comprise (1) monthly wind roses for 5-degree squares

published in the Pilot Charts of the North and South Pacific, giving the
percentage of winds from different directions and the corresponding average
wind force (on the Beaufort scale) and (2) compilations of frequencies of
winds of different forces in the "Atlas of Climatological Charts of the
Oceans."9 From the wind data the average wind stresses in October and
November were computed, using the relationship

T= 2p U2

where y2 iS the resistance coefficient, p' the density of the air, and U the
wind speed as estimated at a height of about 10 meters. At wind force 3
Beaufort or less the sea surface was assumed to be hydrodynamically
smooth, with a resistance coefficient of about 0.8 X 10-3, decreasing some-
what with increasing wind speed.. At wind force 4 Beaufort and higher
a constant value, y2 = 2.6 X 10-3, was used, corresponding to a hydro-
dynamically rough surface (Rossby'0). The manner in which all computa-
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tions were carried out will be described elsewhere by the author and R. 0.
Reid, who has prepared the figures in this paper.

FIGURE 1

In figure 1 the terms of equation (16) are shown as functions of latitude.
The curve that represents the left-hand term is heavily dashed to the south
of latitude 6°N where the oceanographic observations upon which it is
based were all taken in October-November, although in different years.

To the north of 6°N the curve is shown by light dashes because observa-
tions off the American west coast in March have been combined with
observations in mid-ocean in. October. The right-hand term, the; stress
function, is shown by a full-drawn curve and is based on dlimatological wind
data for the months October-November. The agreement between the
curves is very good, considering tht results of average wind conditions
are compared with results derived from a few oceanographic stations
which have been occupied in different seasons.
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In figure 2 the P function and the terms of equation (19) are plotted
against latitude. The P function is based on the Carnegie observations

FIGURB 2

in mid-ocean in October-November, 1928, and the stress fenction on the
average wind conditions in October-November over the ocean from the
American west coast to the Carnegie section. A good agreement is obtained
between the results based on a single oceanographic section and those
derived from climatological wind charts.

4. Condusions.-The distribution of density and the mass transport
by the accompanying currents of the eastern equatorial Pacific depend
entirely upon the average stress exerted on the sea surface by.the prevailing
winds. This conclusion is probably valid for the equatorial currents of
all oceans but it has been demonstrated only for a case in which the non-
linear terms in the equation of motion can be neglected.

It appears possible that the analysis of the relationship between wind
stress and prevailing currents, assuming baroclinic conditions, can be
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extended to other cases and can be developed into a powerful tool for
examining permanent currents as well as changes produced by changing
winds. Efforts in this direction are being continued.

* Contributions from the Scripps Institution of Oceanography, New Series, No. 324.
'Ekman, V. W., Annalen Hydrographie u. Mar. Met., 34, 423-430 (1906).
2Stockmann, W., Comptes rendus (Doklady) l'Acad. sci. I'U.R.S.S., 52, 309-312

(1946).
Fjeldstad, J. E., Archiv Math. Naturvid., 48, no. 6 (1946).

4 Montgomery, R. B., and Palmen, E., Jour. Marine Research, 3, 112-133 (1940).
6 Ekman, V. W., Gerlands Beitr. z. Geophysik, Suppl. 4 (1939).
6 Defant, A., Deutsche Atlantische Exped. "Meteor" 1925-27, Wiss. Ergebn., 4, no. 2,

191-260 (1941).
7 Fleming, J. A., et al., Sci. Results Cruise VII "Carnegie" 1928-29, I-B (1945).
8 Sverdrup, H. U., and Staff, Records Observations, Scripps Institution of Oceanog-

raphy, 1, 65-160 (1943).
9 U. S. Weather Bureau, W. B. No. 1247 (1938).

10 Rossby, C.-G., Papers Phys. Oceanography Meteorology, 4, no. 3 (1936).

THE PROBLEMS OF CONGRUENT NUMBERS AND
CONCORDANT FORMS

BYE.T.BELL

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA

Communicated August 12, 1947

1. Four Related Problems.-All letters in formulas denote rational
integers, and solution means the complete solution in such integers. The
problem of solving the simultaneous diophantine equations

rX2 + mY2 = rZ2, sX2 + nY2 = sW2

includes as special cases two classical problems.
Problem 1.-If r = s = y2 = 1, n = -m, where m is a given constant,

the problem is that of congruent numbers. It goes back to Diophantus
in the third century, the Arabs of the tenth and eleventh centuries, and
Leonardo of Pisa (Fibonacci) in the early thirteenth century. For m
arbitrarily assigned it is still unsolved.
Problem 2.-For r = s = 1 the problem is Euler's (1780) of concordant

forms, also unsolved.
Many special cases of these two have been investigated. Thus Fermat

proved by his method of descent that if m = n = -1 in Problem 2, there
are no integers X, Y, Z, W all different from zero satisfying the equations.
From this his theorem for fourth powers follows. Modem work originat-
ing in these problems has been concerned with cubics and quartics having
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